
Introduction to compilers and interpreters

基础软件理论与实践公开课

张宏波

1

Logistics

Course website: https://bobzhang.github.io/courses/

Discussion forum: https://bbs.csdn.net/forums/raelidea

Target audience:
People who are interested in language design and implementations

No PL theory pre-requisites

Example code language: ReScript
Homebrew

ReScript is a dialect of ML: Why ML are good for writing compilers

Easy to install on major platforms including Windows

2

https://bobzhang.github.io/courses/
https://bbs.csdn.net/forums/raelidea
https://rescript-lang.org/
https://flint.cs.yale.edu/cs421/case-for-ml.html

地点：深圳

程序语言工具链， 开发者工具，垃圾回收，代码编辑器，IDE等

3

Introduction

Why study compiler&interpreters ?

It is fun

Understand your tools you use everyday

Understand the cost of abstraction

Hidden allocation when declaring local functions

Why memory leak happens

Make your own DSLs for profit

Develop a good taste

4

Course Overview

5

Compilation Phases

6

Compilers, Transpilers, Interpreters

Compilation and execution in two stages

Interpretation in one stage

Transpilers translate a source code from a language to another at similar level of

abstraction 7

Lexing & Parsing

From strings to an abstract syntax tree

Usually split into two phases: tokenization and parsing

Lots of tool support, e.g.

Lex, Yacc, Bison, Menhir, Antlr, TreeSitter, parsing combinators, etc.

8

Semantic Analysis

Build the symbol table, resolve variables, modules

Type checking & inference
Check that operations are given values of the right types

Infer types when annotation is missing

Typeclass/Implicits resolving

check other safety/security problems

Lifetime analysis

Type soundness: no runtime type error when type checks

9

Language specific lowering, optimizations

Class/Module/objects/typeclass desugaring

Pattern match desugaring

Closure conversion

Language specific optimizations

IR relatively rich, MLIR

10

Linearization & optimizations

Language & platform agnostics

Opimizations

Constant folding, propogation, CSE, parital evaluation etc

Loop invariant code motion

Tail call eliminations

Intra-procedural, inter-procedural optimization

IR simplified: three address code, LLVM IR etc

11

Platform specific code generation

Instuction selection

Register allocation

Instruction scheduling and machine-specific optimization

Most influential in numeric compuations, DSA

12

Abstract Syntax vs. Concrete Syntax

Modern language design: no semantic analysis during parsing

Counter example: C++ parsing is hard, error message is cryptic

Many-to-one relation from concrete syntax to abstract syntax

Start from abstract syntax for this course

Tutorials later for parsing in ReScript

13

Tiny Language 0

Abstract Syntax

type rec expr =

 | Cst (int) // i

 | Add (expr,expr) // a + b

 | Mul (expr,expr) // a * b

14

Interpreter

let rec eval = (expr) => {

 switch expr {

 | Cst (i) => i

 | Add(a,b) => eval (a) + eval (b)

 | Mul(a,b) => eval (a) * eval (b)

 }

}

15

Formalization

Semantics

The evaluation result is a value, which is an integer for our expression language

The evaluation rules:

16

Inference rules

The evaluation relation means expression evaluates to value , for example

Inference rules provide a concise way of specifying language properties, analyses, etc

If the premises are true, then the conclusion is true

An axiom is a rule with no premises

Inference rules can be instantiated by replacing metavariables

 with expressions, program variables, integers

17

Proof Tree

Instantiated rules can be combined into proof trees

 holds if and only if there is a finite proof tree constructed from correctly
instantiated rules, and leaves of the tree are axioms

18

What is the problem of our interpreter?

19

Lowering to a stack machine and interpret

type instr = Cst (int) | Add | Mul

let rec eval = (instrs,stk) => {

 switch (instrs,stk) {

 | (list{ Cst (i), ... rest},_) =>

 	 eval(rest, list{i,...stk})

 | (list{Add, ... rest}, list{a,b,...stk}) =>

 	 eval(rest, list{a+b, ...stk})

 | (list{Mul, ... rest}, list{a,b,...stk}) =>

 	 eval(rest, list{a*b, ...stk})

 | _ => assert false

 }

}

20

Semantics

The machine has two components:

a code pointer giving the next instruction to execute

a stack holding intermediate results

Notation for stack: top of stack is on the left

21

Transition of Stack Machine

Code and stack:

Transition of the machine:

The execution of a sequence of instructions terminates when the code pointer reaches the
end and returns the value on the top of the stack

22

Formalization

The compilation corresponds to the following mathematical formalization.

 is a commonly used notation for compilation

Invariant: stack balanced property

Proof by induction (machine checked proof using Coq)

23

Compilation

The evaluation language implicitly uses the stack of the host language

The stack machine manipulates the stack explicitly

Correctness of Compilation

A correct implementation of the compiler preserves the semantics in the following sense

24

Tiny Language 1

Abstract Syntax: add names

type rec expr =

 ...

 | Var (string)

 | Let (string , expr , expr)

25

Interpreter

Semantics with Environment

type env = list<(string, int)>

let rec eval = (expr, env) => {

 switch expr {

 | Cst (i) => i

 | Add(a,b) => eval (a, env) + eval (b, env)

 | Mul(a,b) => eval (a, env) * eval (b, env)

 | Var(x) => assoc (x, env)

 | Let(x,e1,e2) => eval(e2, list{(x,eval(e1,env)), ...env})

 }

}

26

Formalization

Notations for the environment:

The evaluation rules:

27

What's the problem in our evaluator

Where is the redundant work and can be resolved in compile time?

The length of variable name affect our runtime performance!!

28

Tiny Language 2

The position of a variable in the list is its binding depth (index)

module Nameless = {

 type rec expr =

 ...

 | Var (int)

 | Let (expr, expr)

}

29

Semantics

Evaluation function

type env = list<int>

let rec eval = (Nameless.expr, env) => {

 switch expr {

 | Cst(i) => i

 | Add(a,b) => eval (a, env) + eval (b, env)

 | Mul(a,b) => eval (a, env) * eval (b, env)

 | Var(n) => List.nth (env, n)

 | Let(e1,e2) => eval(e2, list{eval(e1,env), ...env})

 }

}

30

Semantics

Terms and values are the same.

Environments become sequence of values , accessed by position

Evaluation rules:

31

Explanation

The evaluation environment for contains both names and values

The evaluation environment for only contains the values, indexes
resolved at compile time

32

Lowering to

type cenv = list<string>

let rec comp = (expr : expr , cenv : cenv): Nameless.expr => {

 switch expr {

 | Cst(i) => Cst(i)

 | Add(a,b) => Add(comp(a, cenv), comp(b, cenv))

 | Mul(a,b) => Mul(comp(a, cenv), comp(b, cenv))

 | Var(x) => Var(index(cenv, x))

 | Let(x,e1,e2) => Let(comp(e1, cenv), comp(e2, list{x,...cenv}))

 }

}

33

Compile

type instr = ... | Var (int) | Pop | Swap

Semantics of the new instructions

where reads the -th value from the top of the stack

34

Stack Machine with Variables

The program:

is compiled to instructions:

The execution on the stack:

35

Question

It is obvious we need the instruction to reference variables on the stack

But why do we need the and instructions?

36

More Example

Consider the following program

1 + (let x = 2 in x + 7 end)

is compiled to instructions

The execution on the stack:

37

Summary

What have we achieved through compilation? Compare the runtime environment

Evaluating

a symbolic environment for local variables

(implicit) stack of the host language for temperaries

Evaluating

a stack for local variables

(implicit) stack of the host language for temperaries

For stack machine instructions, we have

a stack for both local variables and temperaries

38

Summary

Homework

Write an interpreter for the stack machine with variables

Write a compiler to translate to stack machine instructions

Implement the dashed part (one language + two compilers)
39

