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Logistics

Course website: https://bobzhang.github.io/courses/

Discussion forum: https://bbs.csdn.net/forums/raelidea

Target audience:
People who are interested in language design and implementations

No PL theory pre-requisites

Example code language: ReScript
Homebrew

ReScript is a dialect of ML: Why ML are good for writing compilers

Easy to install on major platforms including Windows
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地点：深圳

程序语言工具链， 开发者工具，垃圾回收，代码编辑器，IDE等
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Introduction

Why study compiler&interpreters ?

It is fun

Understand your tools you use everyday

Understand the cost of abstraction

Hidden allocation when declaring local functions

Why memory leak happens

Make your own DSLs for profit

Develop a good taste
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Course Overview
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Compilation Phases
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Compilers, Transpilers, Interpreters

Compilation and execution in two stages

Interpretation in one stage

Transpilers translate a source code from a language to another at similar level of
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Lexing & Parsing

From strings to an abstract syntax tree

Usually split into two phases: tokenization and parsing

Lots of tool support, e.g.

Lex, Yacc, Bison, Menhir, Antlr, TreeSitter, parsing combinators, etc.
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Semantic Analysis

Build the symbol table, resolve variables, modules

Type checking & inference
Check that operations are given values of the right types

Infer types when annotation is missing

Typeclass/Implicits resolving

check other safety/security problems

Lifetime analysis

Type soundness: no runtime type error when type checks
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Language specific lowering, optimizations

Class/Module/objects/typeclass desugaring

Pattern match desugaring

Closure conversion

Language specific optimizations

IR relatively rich, MLIR
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Linearization & optimizations

Language & platform agnostics

Opimizations

Constant folding, propogation, CSE, parital evaluation etc

Loop invariant code motion

Tail call eliminations

Intra-procedural, inter-procedural optimization

IR simplified: three address code, LLVM IR etc
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Platform specific code generation

Instuction selection

Register allocation

Instruction scheduling and machine-specific optimization

Most influential in numeric compuations, DSA
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Abstract Syntax vs. Concrete Syntax

Modern language design: no semantic analysis during parsing

Counter example: C++ parsing is hard, error message is cryptic

Many-to-one relation from concrete syntax to abstract syntax

Start from abstract syntax for this course

Tutorials later for parsing in ReScript
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Tiny Language 0

Abstract Syntax

type rec expr = 

  | Cst (int) // i 

  | Add (expr,expr) // a + b

  | Mul (expr,expr) // a * b
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Interpreter

let rec eval = (expr) => {

  switch expr {

  | Cst (i) => i 

  | Add(a,b) => eval (a) + eval (b) 

  | Mul(a,b) => eval (a) * eval (b)

  }

}
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Formalization

Semantics

The evaluation result is a value, which is an integer for our expression language

The evaluation rules:
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Inference rules

The evaluation relation  means expression  evaluates to value , for example

Inference rules provide a concise way of specifying language properties, analyses, etc

If the premises are true, then the conclusion is true

An axiom is a rule with no premises

Inference rules can be instantiated by replacing metavariables

 with expressions, program variables, integers
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Proof Tree

Instantiated rules can be combined into proof trees

 holds if and only if there is a finite proof tree constructed from correctly
instantiated rules, and leaves of the tree are axioms
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What is the problem of our interpreter?
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Lowering to a stack machine and interpret

type instr =  Cst (int) | Add | Mul


let rec eval = (instrs,stk) => {

  switch (instrs,stk) {

  | (list{ Cst (i), ... rest},_) =>

    	 eval(rest, list{i,...stk})

  | (list{Add, ... rest}, list{a,b,...stk}) => 

    	 eval(rest, list{a+b, ...stk})

  | (list{Mul, ... rest}, list{a,b,...stk}) => 

    	 eval(rest, list{a*b, ...stk})

  | _ => assert false

  }

}
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Semantics

The machine has two components:

a code pointer  giving the next instruction to execute

a stack  holding intermediate results

Notation for stack: top of stack is on the left
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Transition of Stack Machine

Code and stack:

Transition of the machine:

The execution of a sequence of instructions terminates when the code pointer reaches the
end and returns the value on the top of the stack
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Formalization

The compilation corresponds to the following mathematical formalization.

 is a commonly used notation for compilation

Invariant: stack balanced property

Proof by induction (machine checked proof using Coq)
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Compilation

The evaluation  language implicitly uses the stack of the host language

The stack machine manipulates the stack explicitly

Correctness of Compilation

A correct implementation of the compiler preserves the semantics in the following sense
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Tiny Language 1

Abstract Syntax: add names

type rec expr = 

  ...

  | Var (string)

  | Let (string , expr , expr)
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Interpreter

Semantics with Environment

type env = list<(string, int)>


let rec eval = (expr, env) => {

  switch expr {

  | Cst (i) => i 

  | Add(a,b) => eval (a, env) + eval (b, env) 

  | Mul(a,b) => eval (a, env) * eval (b, env)

  | Var(x) => assoc (x, env)

  | Let(x,e1,e2) => eval(e2, list{(x,eval(e1,env)), ...env})

  }

}
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Formalization

Notations for the environment:

The evaluation rules:
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What's the problem in our evaluator

Where is the redundant work and can be resolved in compile time?

The length of variable name affect our runtime performance!!
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Tiny Language 2

The position of a variable in the list is its binding depth (index)

module Nameless = {

  type rec expr =

    ...

    | Var (int)

    | Let (expr, expr)

}
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Semantics

Evaluation function

type env = list<int>


let rec eval = (Nameless.expr, env) => {

  switch expr {

    | Cst(i) => i

    | Add(a,b) => eval (a, env) + eval (b, env)

    | Mul(a,b) => eval (a, env) * eval (b, env)

    | Var(n) => List.nth (env, n)

    | Let(e1,e2) => eval(e2, list{eval(e1,env), ...env})

  }

}
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Semantics

Terms and values are the same.

Environments become sequence of values , accessed by position 

Evaluation rules:
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Explanation

The evaluation environment  for  contains both names and values

The evaluation environment  for  only contains the values, indexes
resolved at compile time
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Lowering  to 

type cenv = list<string>


let rec comp = (expr : expr , cenv : cenv): Nameless.expr => {

    switch expr {

        | Cst(i) => Cst(i)

        | Add(a,b) => Add(comp(a, cenv), comp(b, cenv))

        | Mul(a,b) => Mul(comp(a, cenv), comp(b, cenv))

        | Var(x) => Var(index(cenv, x))

        | Let(x,e1,e2) => Let(comp(e1, cenv), comp(e2, list{x,...cenv}))

    }

}
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Compile 

type instr =  ... | Var (int) | Pop | Swap 


Semantics of the new instructions

where  reads the -th value from the top of the stack

34



Stack Machine with Variables

The program: 

is compiled to instructions:

The execution on the stack:
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Question

It is obvious we need the  instruction to reference variables on the stack

But why do we need the  and  instructions?
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More Example

Consider the following program

1 + (let x = 2 in x + 7 end)


is compiled to instructions

The execution on the stack:
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Summary

What have we achieved through compilation? Compare the runtime environment

Evaluating 

a symbolic environment  for local variables

(implicit) stack of the host language for temperaries

Evaluating 

a stack for local variables

(implicit) stack of the host language for temperaries

For stack machine instructions, we have

a stack for both local variables and temperaries
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Summary

Homework

Write an interpreter for the stack machine with variables

Write a compiler to translate  to stack machine instructions

Implement the dashed part (one language + two compilers)
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